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Abstract

A contamination source identification problem in constant porous media flow is addressed by solving the advection–dispersion equa-
tion (ADE) with a hierarchical Bayesian computation method backward through time. The contaminant concentration is modeled as a
pair-wise Markov random field (MRF) and the distribution is updated using current concentration measurements at finite locations.
Hierarchical Bayesian analysis is used to derive the posterior distribution of the contaminant concentration at past time points. The pos-
terior mean estimate is computed using a modified single-component Gibbs algorithm. The methodology is first tested via examples of
contaminant identification in a homogeneous porous medium using both diffusion-dominated and convection-dominated conditions. A
heterogeneous porous media flow case is also examined. In all the numerical studies reported, the anisotropic dispersion effect is consid-
ered. It is verified that the MRF model can effectively model the spatial correlation of the concentration field, and the presented approach
can provide accurate solutions to the ill-posed inverse problem.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The contamination source identification problem has
received significant research interest due to its applications
in groundwater and soil cleanup. Addressing this problem
requires solving the partial differential equations (PDEs) of
contaminant propagation in porous media flow backwards
in time. Namely, the objective is to compute the history of
contaminant concentration from current concentration
data. The ill-posedness of this inverse problem and the diffi-
culties in simulating the contaminant propagation have been
well-recognized. To facilitate the solution to this challenging
problem, a variety of methods have been developed over the
past several decades, which have been reviewed by Atmadja
and Bagtzoglou [1] and Michalak and Kitanidis [2].
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Among the solution methods considered, Bayesian com-
putation has a number of distinctive attributes. The Bayes-
ian approach restates the ill-posed inverse problem as a
well-posed problem in an expanded stochastic space.
Instead of computing only deterministic point estimates,
it computes the probability distribution (often called pos-
terior distribution) of contaminant concentration history
conditional on current concentration data. The Bayesian
approach can quantify random errors in the data and
uncertainties in the concentration field. The posterior dis-
tribution is composed of the likelihood, which is the prob-
ability of the data given the concentration history, and the
prior distribution, which models the regularity of the
unknown concentration field. Incorporation of the prior
distribution allows flexible regularization and accurate esti-
mation from sparse data.

The Bayesian approach was introduced for solving
contamination source identification by Snodgrass and
Kitanidis [3]. In [4,5], Michalak and Kitanidis developed
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Nomenclature

A acceptance probability
c concentration
ĉ known concentration at well
c0 initial concentration
D dispersion tensor
f linear FE basis function
H sensitivity matrix
I identity matrix
K permeability
L length of Markov chain
L2 square-integrable function space
m dimension of h
N total number of data
n unit normal direction vector
p pressure, probability density function
Pe local Peclet number
q volume flux, rate proposal distribution
t time
Dt time step size
T maximum time of simulation
u random number
u Darcy velocity
U uniform distribution
w test function of concentration
w test function of velocity
W precision matrix
x spatial vector
Y concentration data vector

Greek symbols

a Gamma distribution parameter
am molecular diffusivity

al longitude dispersion coefficient
at transverse dispersion coefficient
b Gamma distribution parameter
c scaling constant of MRF
C Gamma function
h parameter form of unknown c

ĥ estimate of h
k scaling constant of MRF
l dynamic viscosity
n parameter of hyper-prior
r standard deviation of xm

s upwind parameter
/ porosity
U kernel function of MRF
xm random measurement error
X spatial domain
Xe finite element domain
oX spatial domain boundary

Superscripts

T transpose
(i) ith iteration or ith time step
(*) candidate

Subscripts

i ith component
�i full conditional
i � j site neighborhood
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a confined Brownian motion model to enforce nonnegativ-
ity of concentration estimates and to select structure
parameters of the Bayesian posterior distribution. In our
work, a pair-wise Markov random field is introduced
to regularize the prior distribution of concentration his-
tory. A hierarchical Bayesian analysis is introduced,
allowing the uncertainty (structure) parameters to be quan-
tified as part of the posterior distribution and to be
explored using a mixed Metropolis–Hastings (MH) algo-
rithm [6].

In contrast to the relatively straightforward formula-
tion of the likelihood, modeling the prior distribution in
the Bayesian approach is more difficult. Considering the
structure of a spatially varying concentration field, a
pair-wise MRF model is introduced from spatial statistics
[7]. The MRF models the spatial correlation among
concentration variables at adjacent locations, which
smoothes the concentration field. This model has been
used in a variety of spatial applications [8,9]. Very
recently, the model was introduced to inverse heat trans-
fer problems by Wang and Zabaras [10,11], where time is
treated as an extra spatial dimension in modeling
dynamic fields. In [11], the canonical MRF model was
enhanced to model random fields with different temporal
and spatial length scales and to resolve discontinuities in
the unknown fields.

In this work, in addition to the concentration field, the
standard deviation of measurement errors and the scaling
parameter of the prior distribution are also treated as ran-
dom variables. We refer to these parameters as �structure
variables� following the terminology by Michalak and
Kitanidis [4]. These parameters are often called hyper-
parameters in Bayesian statistics. Hierarchical Bayesian
analysis [12] is used to derive the joint distribution of struc-
ture parameters with the unknown concentration field. The
joint posterior state space is then explored using a mixed
Markov chain Monte Carlo (MCMC) sampler that sam-
ples the concentration variables using the Gibbs algorithm
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[13] and the structure parameters using the MH algorithm
[14].

Simulation data are used in this study to test the pre-
sented inverse computation method. The Darcy equation
for porous media flow is first solved using the global
gradient post-processing method [15]. The velocity field is
then used to solve the advection–dispersion equation of
concentration using a streamline-upwind/Petrov–Galerkin
(SUPG) finite element method. All equations are solved
on a rather fine grid to generate simulation data, thus
avoiding the so called �inverse crimes� [16].

The rest of this article is organized as follows. Section 2
introduces the mathematical definition of the problem. The
direct simulation of the contamination propagation is dis-
cussed in Section 3. It is then followed by the hierarchical
Bayesian formulation of the inverse computation. The pos-
terior exploration algorithms are presented in Section 5.
Section 6 contains numerical examples to demonstrate
the developed methodology. Finally, conclusions of the
current work and future research issues are summarized
in Section 7.
2. Problem definition

Propagation of contaminant in an impermeable porous
medium can be described by the following advection–
dispersion equation (ADE) [17]:

/
oc
ot

þr � ðcuÞ � r � ðDrcÞ ¼ ĉq; in X� ð0; T �; ð1Þ

with prescribed initial and (Neumann) boundary
conditions,

cðx; 0Þ ¼ c0ðxÞ; in X; ð2Þ
Drc � n ¼ 0; on oX� ð0; T �. ð3Þ

In the above equations, c is the concentration (mass frac-
tion) of the contaminant and ĉ is the prescribed concentra-
tion values at the injection and production wells. Also q

denotes the volume flux rate at the wells and / and D

are the medium porosity and dispersion tensor, respec-
tively. Finally, X is the spatial domain and (0,T] is the total
time span. The anisotropic dispersion coefficient D can be
modeled as follows:

D ¼ /famIþ kuk½alEðuÞ þ atE?ðuÞ�g; ð4Þ

with

EðuÞ ¼ 1

kuk2
u� u; E?ðuÞ ¼ I� EðuÞ; ð5Þ

where I is the identity matrix, and am, al and at are the
molecular diffusivity, longitudinal dispersion coefficient
and transverse dispersion coefficient, respectively. The
Darcy velocity u can be computed from the following
equations:
r � u ¼ q; in X� ð0; T �; ð6Þ

u ¼ �KðxÞ
lðcÞ rp; in X� ð0; T �; ð7Þ

u � n ¼ 0; on oX� ð0; T �; ð8Þ

where p is the hydrodynamic pressure and K and l are the
permeability and dynamic viscosity, respectively. In this
study, we assume the variation of viscosity can be ne-
glected, i.e. l is a constant equal to the dynamic viscosity
of the resident fluid (water). Therefore, the ADE equation
(1) is decoupled from the flow Eqs. (6) and (7).

A direct (or forward) contaminant propagation problem
is defined as the computation of the concentration distribu-
tion at all times t 2 (0,T], given initial condition equation
(2) and boundary condition equation (3). In the inverse
problem of interest considered, the contamination concen-
tration at current time t = T can be measured at finite loca-
tions inside X. However, the history of contaminant
distribution is not known. Namely, c0 and the time span
T between releasing time t = 0 of the contaminant and
measurement time t = T are both unknown. The inverse
problem is to compute the concentration backward in time,
namely c(t) with t < T, on a finer scale grid than the mea-
surement scale grid. It is assumed that no prior knowledge
of releasing time and location of the contaminant is avail-
able. The releasing time is defined as the time point corre-
sponding to a backward computed concentration of 1.0 at
any location.

3. The direct simulation and sensitivity analysis

3.1. Solution to the flow equations

Solution to the direct problem is required for the inverse
computation. The direct simulation can be separated into
two parts: solution to the flow equations and solution to
the concentration equation. In the first part, the constant
flow velocity field is obtained by solving Eqs. (6)–(8). The
velocity is then used in solving Eqs. (1)–(5).

In the context of the finite element (FE) method, the
most common approaches to solving the flow equations
(6)–(8) are the stabilized finite element method, in which
the pressure and velocity are determined simultaneously,
and the gradient post-processing method, in which the
pressure is found first and then the velocity is calculated
via gradient post-processing. The gradient post-processing
method is easier to implement and computationally less
costly. It solves a diffusion equation derived by substituting
Eq. (7) into Eq. (6) for pressure first. The velocity is then
computed as the smoothed gradient of the pressure field.
In this work, the flow equations are solved using a global
post-processing method as discussed in [15].

In the gradient post-processing approach, the pressure is
solved using

r � K
l
rp

� �
¼ �q; ð9Þ
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which is derived by substituting Eq. (7) into Eq. (6). The
finite element technique to solve this steady state diffusion
equation is trivial. Once the pressure field is obtained,
Eq. (7) can be used to compute the velocity. However, since
the finite element solution of pressure is usually not smooth
across element boundaries, the velocity obtained by di-
rectly computing the gradient of pressure is discontinuous
across element boundaries, which is not physically feasi-
ble. To achieve a continuous velocity solution, a global
L2-smoothing post-processing problem is usually solved
with the following weak formulation:

ðu;wÞ ¼ �K
l
rp;w

� �
; ð10Þ

where (Æ, Æ) is the L2(X) inner product and w is the test func-
tion for velocity. According to Loula et al. [15], to further
increase the accuracy of the post-processing result, Eq. (10)
is often modified as:

ðu;wÞ þ ðdhÞaðr � u;r � wÞ ¼ �K
l
rp;w

� �
þ ðdhÞaðq;r � wÞ;

ð11Þ
in which h is the finite element grid size. The parameters d
and a are here taken as 0.1 and 1, respectively [15]. Let

U ¼ fuju 2 ðL2ðXÞÞdim; r � u 2 L2ðXÞ; u � n ¼ 0g. ð12Þ
The problem can be stated as to find u 2 U, such that, for
all w 2 U, Eq. (11) holds.

3.2. Solution of the concentration equation

After computing the velocity from the above
approaches, one can evaluate the concentration using Eq.
(1). To solve this advection–dispersion equation, the SUPG
finite element formulation is used [19]:Z

X
/
oc
ot

wdXþ
Z
X
ðu � rcÞwdXþ

Z
X
qcwdX

þ
Z
X
Drc � rwdXþ

Xnel
e¼1

Z
Xe
suerw /

oc
ot

þ ue � rcþ qc
� �

dXe

¼
Z
X
ĉqwdXþ

Xnel
e¼1

Z
Xe

suerwĉqdXe; ð13Þ

where w is the test function for concentration. The weak
problem is to find c 2 H1(X) such that, for all w 2 H1(X)
Eq. (13) holds. The element based integrals (the 5th term
on the left hand side and the 2nd term on the right hand
side) are the SUPG stabilizing terms, in which s is the
upwind parameter. In this formulation, it is assumed that
the gradient of the test function w is discontinuous across
element boundaries. The stabilization parameter s is
computed via the following formula:

s ¼ 1

2

h
kuek

min
Pe
3
; 1:0

� �
; ð14Þ

where Pe is the local (element) Peclet number that is
defined as
Pe ¼ 1

2
h
kuek3

uTeDue
. ð15Þ

With the finite element formulations introduced above,
the direct problem is solved using two-dimensional bi-lin-
ear finite elements. The simulator was implemented for par-
allel machines using PETSc [18] and has been tested by
comparing the results to solutions of various numerical
examples documented in [19–21].

3.3. Sensitivity analysis

A discussion of sensitivity analysis is necessary to
improve understanding of the Bayesian formulation. To
present the sensitivity analysis, a simpler inverse problem
is temporarily considered in this section. By assuming a
known releasing time of contaminant, the inverse problem
introduced in Section 2 is reduced to the estimation of a
spatially varying function c0(x). This function estimation
problem is further transformed into a parameter estimation
problem by introducing the following approximation:

ĉ0ðxÞ ¼
Xm
j¼1

hjfjðxÞ; ð16Þ

where fj(x)�s are the linear finite element basis functions
and hj�s are the nodal values of finite element approxima-
tion of c0. The problem now is to estimate an unknown
m-dimensional vector h with h(j) = hj being the nodal value
associated with the jth basis function.

Let c(x,T) be the concentration at measurement time
t = T that is computed from Eq. (1) using ĉ0 as initial
condition. Due to the linearity of the direct problem,

cðx; T Þ ¼
Xm
j¼1

hjcjðx; T Þ; ð17Þ

with cj(x,T) being the direct solution of concentration at
t = T using fj(x) as the initial condition.

Let the N-dimensional vector Y denote the concentra-
tion measurement data at t = T with Y(i) being the
measurement at the ith sensor location (xi) and N being
the total number of sensors. Furthermore, let C be the
N-dimensional vector with C(i) = c(xi,T). Using Eq. (17),
C can be represented as

C ¼ Hh; ð18Þ

inwhichH is aN · mmatrixwithH(i, j) = cj(xi,T).H is often
called the sensitivity matrix. It componentH(i, j) reflects the
sensitivity of the concentration C(i) at each sensor location i

with respect to small variations in the parameter h(j).
In the remaining part of this article, the following

system relationship is assumed:

Y ¼ Hhþ x; ð19Þ

where x denotes the error between the measured data and
the concentration computed using the true initial condi-
tion. Therefore, x contains both the random measurement
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error and the numerical error. The objective of the simpler
inverse problem is to find an estimate of h such that the
discrepancy between Y and C is minimized in some sense.

With the capability to simulate the direct problem and
compute the sensitivity matrix, we are now ready to inves-
tigate the Bayesian formulation.

4. Bayesian backward computation

4.1. Bayesian inverse formulation

For the parameter estimation problem in Eq. (19),
Bayesian inference computes the probability density func-
tion of random unknown h conditional on the data Y using
the Bayes� formula:

pðhjY Þ ¼ pðY jhÞpðhÞ
pðY Þ ; ð20Þ

where the conditional density function p(Yjh) is the likeli-
hood and p(h) is the prior density function. The conditional
density function p(hjY) is often called the posterior probabil-
ity density. The difference between the Bayesian approach
and other inverse methods is that the Bayesian approach
determines the distribution of unknown parameters instead
of point estimates, and as a result, the inverse problem is for-
mulated as a well-posed problem in a stochastic space (state
space defined by the prior distribution). Even in seeking
point estimates, the Bayesian approach enablesmore flexible
regularization than othermethods. Based upon the posterior
distribution, credible intervals at arbitrary levels can be com-
puted for all Bayesian point estimates, which is another
advantage of the Bayesian approach.

Despite the fact that a number of point estimates can be
computed according to different loss function definitions,
the posterior mean estimate (minimum mean square error
(MMSE) estimate) is deemed a reliable estimate and is
computed in the current study as the inverse solution.
The posterior mean estimate is defined as

ĥpostmean ¼ EhjY . ð21Þ
There are two points worth emphasizing here: first, it is

only meaningful to study the probability of a random var-
iable existing within an interval, rather than having a par-
ticular value; therefore, estimation of the distribution
makes more practical sense that computing point estimates.
Second, the actual value of the parameter h is fixed instead
of being random. The rationality in modelling it as a ran-
dom variable is that it is inferred from the noise-polluted
data; hence, uncertainties exist in our knowledge of this
quantity.

As seen from Eq. (20), to obtain the posterior distribu-
tion, one needs to compute p(Y), p(Yjh) and p(h). However,
since Y is the known data, the role of p(Y) is nothing more
than a normalizing constant in the posterior distribution. It
is not needed to compute the posterior estimates using sam-
pling algorithms introduced later in this article. Therefore,
it is enough to evaluate Eq. (20) as follows:
pðhjY Þ / pðY jhÞpðhÞ. ð22Þ
If the random errors in Eq. (19) are assumed to be inde-

pendent identically distributed (i.i.d.) Gauss random noise
with zero mean and variance v (standard deviation
r ¼

ffiffiffi
v

p
), the likelihood can be formulated as

pðY jhÞ ¼ 1

ð2pÞN=2vN=2
exp �ðY � HhÞTðY � HhÞ

2v

( )
. ð23Þ

It should be noticed that even though other distributions
can be used to model random errors, the Gaussian distribu-
tion is the most commonly used model. It is well recognized
that in large data set with random errors, the Gaussian
distribution fits quite well the actual distribution.

To obtain the posterior distribution, the next task is to
formulate the prior distribution p(h).

4.2. Markov random field as prior distribution

The prior distribution represents the distribution infor-
mation of h in advance of Bayesian inference. It defines a
prior state space with a certain degree of regularity that
cures the ill-posedness of the inverse problem. There are
a number of standard techniques to model the prior distri-
bution, some of which are known as conjugate priors and
Jeffery�s priors [12].

For the main unknown h in the current problem, a pair-
wise Markov random field model is selected as the prior.
The consideration is that h represents the concentration
values at a large set of spatial locations (finite element
nodes), while the pair-wise MRF model is designed for
modeling the correlation between spatially adjacent ran-
dom variables on finite lattice system [7]. By modeling
the correlation among spatially indexed random variables
hi�s, regularity is posed on the state space of h.

The general form of the pair-wise MRF is as follows:

pðhÞ / exp �
X
i�j

W ijUðcðhi � hjÞÞ
( )

; ð24Þ

where c is a scaling parameter, U(Æ) is an even function that
determines the specific form of the MRF, the summation is
over all pairs of sites i � j that are defined as neighbors,
and Wij are specified non-zero weights. Let UðuÞ ¼ 1

2
u2,

the MRF used herein is of the form

pðhÞ / km=2 exp � 1

2
khTW h

� �
. ð25Þ

In the above one-parameter model, the entries of the m · m

matrix W are determined as Wij = ni if i = j, Wij = �1 if
sites i and j are adjacent (termed as neighbor sites) and as
0 otherwise. The variable ni denotes the number of neigh-
bors adjacent to site i and k is a scaling parameter.

There are several benefits of the MRF model equation
(25). First of all, it is shift invariant, namely, p(h) =
p(h + b) with b being a vector with identical components.
This ensures that the prior distribution will not over
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constrain the unknown parameter. In addition, Eq. (25) is
much less computationally expensive to explore than a full-
entryGauss randomfield. Furthermore, themethod is rather
flexible in modeling various correlation structures by chang-
ing the order of Markov field and weight specification.

It is important to mention that the above pair-wise MRF
model can be easily extended to the discontinuity adaptive
MRF model that enables automatic resolution of disconti-
nuities in unknown random fields. Interested readers are
encouraged to consult our previous study in [11].

With the likelihood Eq. (23) and prior distribution
Eq. (25), the posterior can be tentatively written as:

pðhjY Þ / exp �ðY � HhÞTðY � HhÞ
2v

( )
� exp � 1

2
khTW h

� �
.

ð26Þ
However, this posterior distribution depends on pre-fixed
values of v and k. In reality, the magnitude of the actual
noise can only be roughly estimated. Selection of k is even
more non-deterministic. These two structure parameters
are key to the estimation of the posterior distribution and
to the degree of smoothness of all point estimates. Unlike
earlier methods that try to select such structure parameters
before the inverse computation, a hierarchical Bayesian ap-
proach is considered here to estimate the distribution of the
structure parameters simultaneously with the computation
of the concentration distribution.

4.3. The hierarchical posterior distribution

The hierarchical Bayesian posterior is usually used when
the prior distribution of the primary unknown variables
(e.g. of the concentration history in the current problem)
depends on some uncertain parameters, also known as
hyper-parameters or structure parameters. The canonical
form of a hierarchical posterior can be written as:

pðh; njY Þ / pðY jhÞpðhjnÞpðnÞ; ð27Þ

where n is the structure parameter and p(n) is the prior dis-
tribution of n. It is assumed in this formulation that the
likelihood solely depends on the primary parameter h.
The advantages of using Bayesian hierarchical posterior
are: (i) the uncertainty of hyper-parameters is quantified,
and (ii) the effect of poor knowledge of structure para-
meters on the posterior is reduced so that the posterior
estimates are less likely to be over-constrained.

The structure parameter is generally assumed to have a
nearly non-informative distribution over its support. For
instance, in the current example, the structure parameters
k and v are both assumed a priori to be nearly uniformly
distributed over (0,1]. However, the functional form of
the nearly non-informative prior varies for different struc-
ture parameters. In this study, conjugate priors [12] are
used to model the prior distribution of k and v.

Conjugate priors are the prior distributions that ensure
the corresponding posterior distributions having the same
functional form as the priors. For Eq. (26), Gamma and
inverse Gamma distributions are chosen as priors for k
and v, respectively:

pðkÞ / ba1
1

Cða1Þ
ka1�1e�b1k; k 2 ð0;1�; ð28Þ

pðv�1Þ / ba2
2

Cða2Þ
v�ða2þ1Þe�b2v

�1

; v 2 ð0;1�; ð29Þ

where C(Æ) is the standard Gamma function. A small value
1.0e�3 is selected for the Gamma distribution constants a1,
a2, b1 and b2. Thus, the distributions Eqs. (28) and (29) are
nearly non-informative over (0,1].

With the hyper priors defined above, a hierarchical
Bayesian posterior distribution can be computed as follows:

pðh; k; vjY Þ / pðY jh; vÞpðhjkÞpðkÞpðvÞ

/ v�N=2 exp �ðY � HhÞTðY � HhÞ
2v

( )

� km=2 exp � 1

2
khTW h

� �
� ka1�1 expf�b1kgv�ð1þa2Þ expf�b2v

�1g;
k 2 ð0;1� \ v 2 ð0;1�. ð30Þ
4.4. The backward marching scheme

Eq. (30) models the posterior distribution of the initial
concentration field when T is known. In the problem of
interest in this study, T is an unknown variable as well.
Therefore, a backward marching scheme is used to re-
construct the entire history of the concentration field.
The procedure is as follows:

1. Select a time step Dt and set T = Dt and t = tcurrent where
tcurrent is the current time (arbitrary reference time).

2. Formulate a posterior in the form of Eq. (30) at
t = tcurrent � T.

3. Compute the posterior mean estimate of concentration
at t.

4. If the computed concentration reaches a value 1 at any
location, exit the iteration. Else, set T = T + Dt and
return to step 2.

In this approach, the concentration prior to the measure-
ment time is reconstructed backward in time until the
releasing time is reached. Note that the sensitivity problems
only need to be solved once in this approach (solve the sen-
sitivity problem over a large time span and record concen-
tration values at sensor locations at all time steps).

Computing integrals of the hierarchical posterior distri-
bution Eq. (30) is not a trivial task. More importantly, one
is often interested in the highest density region of the poster-
ior distribution. Based upon these considerations, a Gibbs
sampling based Markov chain Monte Carlo (MCMC)
simulation method is used to compute the posterior mean
estimate of concentration.
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5. Numerical exploration of the posterior distribution

Monte Carlo simulation is used in this study to compute
the posterior estimates of concentration. The estimator in
Eq. (21) is approximated as

ELðhjY Þ ¼
1

L

XL

i¼1

hðiÞ; ð31Þ

where h(i)�s (i = 1:L) are L samples randomly generated
from the posterior distribution. By the law of large num-
bers, this sample mean converges to the true expectation
as L goes to infinity. Hence, a large enough sample set will
ensure the accuracy of the Monte Carlo approximation.

Key to Monte Carlo simulation is how to generate a
reasonably large sample set from the high dimensional
distribution Eq. (30). Markov chain Monte Carlo
(MCMC) simulation algorithms generate samples from
the posterior distribution while spending most of the sam-
pling steps in the highest density regions of the posterior
state space.

The essence of MCMC algorithms is to explore the state
space of a random parameter using the Markov chain
mechanism [6]. One of the key advantages of using MCMC
is that one can draw samples even if p(x) can only be eval-
uated up to the normalizing constant. The MCMC sampler
designed for exploring Eq. (30) is based on the basic
MCMC algorithm, the Metropolis–Hastings algorithm
and the Gibbs algorithm. The pseudo-code is the following:

1. Initialize h(0), k(0) and v(0)

2. For i = 0: Nmcmc-1
• sample hðiþ1Þ

1 � pðh1jhðiþ1Þ
�1 ; kðiÞ; vðiÞ; Y Þ

• sample hðiþ1Þ
2 � pðh2jhðiþ1Þ

�2 ; kðiÞ; vðiÞ; Y Þ
• ..

.

• sample hðiþ1Þ
m � pðhmjhðiþ1Þ

�m ; kðiÞ; vðiÞ; Y Þ.
• sample u � U(0,1)
• sample k(*) � q k(k

(*)jk(i))
• if u < A(k(*),k(i))
k(i+1) = k(*)

• else

k(i+1) = k(i),

• sample u � U(0,1)
• sample v(*) � qv(v

(*)jv(i))
• if u < A(v(*),v(i))
v(i+1) = v(*)

• else

v(i+1) = v(i).
In the above algorithm, Nmcmc is the total number of
sampling steps, and h(i), k(i), and v(i) are the samples gener-
ated in the ith iteration for h, k, and v, respectively. Also,
hðiÞj is the jth component of h(i). The notation hðiþ1Þ

�j denotes
a m � 1 dimensional vector fhðiþ1Þ

1 ; . . . ; hðiþ1Þ
j�1 ; hðiÞjþ1; . . . ; h

ðiÞ
m g.

Also, pð�jhðiþ1Þ
�j ; kðiÞ; vðiÞÞ is the full conditional distribution of

hj in the ith iteration and u is a random number generated
from the standard uniform distribution U(0,1). Finally,
qk(Æjk(i)) and qv(Æjv(i)) are the proposal distributions for k
and v in the ith iteration, respectively.

This algorithm updates one component of h at each sam-
pling step. The proposal distribution for each component hj
is its full conditional distribution, which is the probability
distribution of hj conditional on all other components. This
full conditional distribution is derived as follows:

pðhjjh�j; k; v; Y Þ � Nðlj; r
2
j Þ; ð32Þ

lj ¼
bj
2aj

; rj ¼
ffiffiffiffi
1

aj

s
; ð33Þ

aj ¼
XN
s¼1

H 2
sj

v
þ kW jj; bj ¼ 2

XN
s¼1

lsHsj

v
� klp; ð34Þ

ls ¼ Y s �
X
t 6¼j

Hstht; lp ¼
X
i6¼j

W ijhi þ
X
k 6¼j

W jkhk. ð35Þ

The acceptance probability of every Gibbs sample is 1;
hence all the samples of h generated in this way are
accepted.

The second part of this algorithm uses an MH sampler
to update k and v. The proposal distributions used to gen-
erate new samples of k and v are both normal distributions
as follows:

qkðkð�ÞjkðiÞÞ � NðkðiÞ; r2
kÞ ð36Þ

and

qvðvð�ÞjvðiÞÞ � NðvðiÞ; r2
vÞ. ð37Þ

There are two notes to this sampling process. First, the
physical limits of h are 0 and 1. However, if such limits are
posed to the sampling process (i.e. rejecting negative sam-
ples and samples greater than 1) the posterior mean esti-
mate can never reach the limits, which causes biasedness.
Therefore, in this study, no constraint is applied to the
sampling process. By doing this, some physically unfeasible
samples are generated, but the posterior mean estimates are
feasible. Second, design of the proposal distributions
qk(k

(*)jk(i)) and qv(v
(*)jv(i)) must ensure that the effective

regularization parameter ð1
2
kr2Þ is not too large.

Once the designed Markov chain converges, the samples
recorded thereafter are from the target posterior distribu-
tion Eq. (30). The posterior mean estimates can then be
computed using these samples.

6. Numerical examples

In this section, the above introduced methodology is
demonstrated via three numerical examples. Without loss
of generality, the examples are studied in dimensionless
form.

6.1. Example 1: 1D advection–dispersion

in a homogeneous porous medium

The first example is a one-dimensional problem adopted
from [1]. Inside the spatial domain [0,28], Eq. (1) holds
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with unit constant velocity, porosity and dispersion coeffi-
cient (u = 1.0, / = 1.0, D = 1.0). The concentration values
at x = 0 and x = 28 are kept at zero. The initial concentra-
tion is a rectangular pulse:

c0ðxÞ ¼
1; 13:5 6 x 6 14:5;

0; 0 6 x 6 13:5; 14:5 6 x 6 28.

�
ð38Þ

The concentration data are collected at t = 2.0, while the
objective is to estimate the concentration at t = 1.1 and
t = 1.9.

Following [1], the direct problem is solved on a grid with
112 elements with time step 0.02. The true and estimated
concentration profiles at t = 1.1 and 1.9 are plotted in Figs.
1 and 2, respectively. It is noticed that the estimate at
t = 1.1 is slightly better than the estimate at t = 1.9, which
is not expected since the data are collected at t = 2.0. This
is due to the fact that the posterior mean estimate is
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Fig. 1. True and posterior mean estimate of concentration at t = 1.1.
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Fig. 2. True and posterior mean estimate of concentration at t = 1.9.
affected by the sample values of k. Since the samples at
these two time points were drawn from separate chains,
the difference in sample values of k causes the larger esti-
mate error at t = 1.9. However, these two estimates are
both rather accurate. This example is different from the
one in [1] in that (i) the concentration data are assumed
to be measured at 27 locations instead of at all element
nodes and (ii) random noise with magnitude of 5% of the
true concentration is added to the data. Still the estimates
are quite accurate. The posterior density of the structure
parameter k in obtaining concentration estimate at
t = 1.1 is plotted in Fig. 3 (Gamma distribution).

6.2. Example 2: 2D concentration reconstruction

In the following examples, we simulate a quarter area of
the classical 5-spot problem. A schematic of the problem is
shown in Fig. 4. Inside the square domain (unit side length),
Eqs. (1) through (8) hold. The injection and production
wells are located at (0,0) and (1,1), respectively, both having
volume flux rate q (varying in different examples).
1000 3000 5000 7000 9000
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Fig. 3. Posterior density of structure parameter k in obtaining concen-
tration estimate at t = 1.1.
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Fig. 4. Schematic of Example 2.
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The actual initial concentration used to generate the
simulation data has a normal distribution peaked at
Fig. 5. Reconstruction of the history of contaminant concentration for
diffusion-dominated transport in a homogeneous porous medium: (a) the
true concentrations at different past time steps and (b) the reconstructed
concentrations.
(0.375,0.75) with standard deviation 0.1. The direct prob-
lem is solved on a 128 · 128 finite element grid with a time
step 0.02. Random measurement errors are simulated from
a normal distribution with zero mean and standard devia-
tion 0.005 (5–15% of the maximum recorded data in exam-
ples) in the homogeneous cases and 0.002 in the
heterogeneous case. The simulation concentration data
are generated by adding random measurement errors to
the direct simulation solution at sensor locations. The data
are used to recover the contaminant concentration history
on a 64 · 64 grid. The number of sensors used varies in the
following examples.

6.2.1. Case I: Diffusion-dominated transport
in homogeneous porous media

In the first two-dimensional example, a diffusion-domi-
nated mode is considered by setting a very small value
(q = 0.001) for the well flux rate. The permeability and vis-
cosity are both taken as 1.0. To ensure that molecular diffu-
sion is the dominant transport mechanism, /, am, al, at take
values 0.1, 0.1, 0.01 and 0.001, respectively. The concentra-
tion data are measured at t = T = 1.0 in this case. The sen-
sors are evenly distributed on nodes of an 8 · 8 grid.

The true concentration profiles and corresponding
reconstructed concentration profiles (posterior mean esti-
mates) at different time points are plotted in Fig. 5. The
time indices are obtained by setting tcurrent = 1.0. Since
the concentration data are only collected at sparse sites at
t = 1.0, it is of interest to reconstruct the entire concentra-
tion field at this time. This is performed here by solving the
direct problem from t = 0 to t = 1.0 using the recon-
structed concentration at t = 0 as the initial condition.
The same backward step size is used as in the direct simu-
lation (Dt = 0.02). It is seen that the estimated concentra-
tion profiles are rather close to the true concentration.
The peak concentration value in posterior mean estimate
at t = 0 is 0.9311, indicating that in this case, the backward
marching procedure will be continued even after the true
initial releasing time.

It has also been observed in the study that the posterior
mean estimates at time points close to the measurement
0
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Fig. 6. Reconstruction of the concentration for diffusion-dominated
transport in a homogeneous porous medium at t = 0: (a) data are
collected at 9 · 9 sensor locations at t = 0.2 and (b) data are collected at
5 · 5 sensor locations at t = 1.0.
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time are the most accurate. In Fig. 6(a), the concentration
estimate at t = 0 (the true releasing time) using data mea-
Fig. 7. Reconstruction of the history of pollute concentration for
advection-dominated transport in a homogeneous porous medium: (a)
shows the true concentrations at different past time steps and (b) shows the
reconstructions.
sured at t = 0.2 is plotted. The peak value in this case is
0.9916. The estimation of releasing time is very accurate
in this case.

To test if the number of sensors can be further reduced,
the above estimation is repeated using data at t = 1.0 from
a 5 · 5 sensor network. The posterior mean estimate of the
concentration at t = 0 (true releasing time) is plotted in
Fig. 6(b). The peak value is only 0.8 in this case. Therefore,
although the peak location and initial concentration profile
can be identified in this case, the estimation of releasing
time is not acceptable.
6.2.2. Case II: Advection-dominated transport
in homogeneous porous media

In the second numerical experiment, we reconsider the
earlier example by changing the following parameters:
q = 0.04, am = 0, al = 0.04 and at = 0.004. Convection
and dispersion are the main mechanisms of contaminant
propagation in this case. Fig. 7 shows the true concentra-
tion profiles and posterior mean estimates at different time
points using data at t = T = 1.0. In this example, the data
are measured using a 16 · 16 sensor network.

In Fig. 8, the estimated profile was generated using the
data collected from a 9 · 9 sensor network. It is seen that
Fig. 8. Reconstruction of the contamination history for advection-
dominated transport in a homogeneous porous medium when data are
collected at 9 · 9 sensor locations at t = 1.0.



Fig. 9. Reconstruction of the history of pollute concentration for
advection–dispersion transport in a heterogeneous porous medium (data
are collected at 32 · 32 grid): (a) the true concentrations at different past
time steps and (b) the computed reconstructions.

Fig. 10. Reconstruction of the history of pollute concentration for
advection–dispersion transport in a heterogeneous porous medium (data
are collected on a 16 · 16 grid).
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more fluctuations exist in the estimates. However, the peak
location and profile of concentration can still be resolved.
6.2.3. Case III: Advection–dispersion in heterogeneous

porous media

In this example, we extend our earlier studies to hetero-
geneous porous media. All the quantities remain the same
as in Example 2 in Section 6.2.2 except the permeability,
which in this case is generated randomly from a joint log-
normal distribution on a 32 · 32 finite lattice. The perme-
ability mean at each site is 1.0 and the standard deviation
of log permeability is 1.5. An uncorrelated permeability
field is assumed in this case. The largest permeability and
smallest permeability values in this example differ by the
magnitude of 105.

Fig. 9 shows the true concentration profiles and poster-
ior mean estimates at different time points using data at
t = T = 1.0. In this example, the data are measured from
a 32 · 32 sensor network. The estimates obtained using
data from a 16 · 16 sensor network are also presented in
Fig. 10. It is observed that the estimates using less sensor
data are comparable to the estimates in Fig. 9. Considering
the heterogeneity and uniformly distributed sensor net-
work, estimates in Fig. 10 are quite impressive.

7. Conclusions and discussion

A hierarchical Bayesian computation method is
presented to solve the contaminant history reconstruction
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problem in porous media. The regularity of the solution to
this inverse problem is enforced by a pair-wise Markov
random field model. Complete mathematical models are
used in obtaining the direct simulation results of contami-
nant propagation in porous media flow. The attributes of
the method are demonstrated via numerical examples
in both homogeneous and heterogeneous porous media
flows.

The current computational method successfully esti-
mates instantaneously released contamination source in
mixed fluids flow with constant viscosity. When the mobil-
ity ratio of contaminant to resident fluid (water) deviates
largely from unity, a more complicated model is required
to simulate the direct physical process. Furthermore, the
estimation of continuously releasing contamination source
is not addressed here and it is a problem of current research
interest.
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